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1.  INTRODUCTION 

The blue economy is expanding globally (Organ-
ization for Economic Cooperation and Development 
2016), leading to a rapid increase in human-made 
structures in the ocean. The worldwide physical foot-
print of marine construction is projected to increase 
at least 23% by 2030 compared to 2018 levels (Bug-
not et al. 2021). As nearshore hard-bottom hab -
itat  is  declining in coastal regions worldwide, hard 
materials associated with marine infrastructure (e.g. 

pipelines, wind farms, breakwaters) could compensate 
for lost habitat area (Airoldi et al. 2009). Artificial reefs 
can promote the development of productive and robust 
ecosystems in nearshore marine environments where 
hard substrate and nutrient availability are limited 
(Layman & Allgeier 2020). For example, in southern 
California (USA), structures built to process and pro-
duce oil and gas support highly productive commu-
nities of rocky reef fish and invertebrates (Froeschke 
et al. 2005, Claisse et al. 2014, Love et al. 2019, Meyer- 
Gutbrod et al. 2019, 2021, Nishimoto et al. 2023). 
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However, engineering designs rarely integrate eco-
logical principles (Dafforn et al. 2015). Im proving our 
understanding of how rocky reef species assemblages 
vary across space, depth, and habitat type can aid in 
the intentional design of marine infrastructure to pro-
vide novel habitat for species of high ecological and 
economic value (Perkol-Finkel et al. 2006). 

Rapid turnover in environmental gradients on mar-
ine reefs results in distinct community zonation 
(Konar et al. 2009, Twist et al. 2020). In comparison to 
coral reefs, relatively less is known about how pat-
terns in species abundance, diversity, and community 
structure vary across depth and other gradients in 
temperate rocky reefs (Lazarus & Belmaker 2021). 
Light, substrate, rugosity, temperature, and wave 
action change with depth, and shape vertical distribu-
tions of marine species (Hixon 2006 and references 
therein, and see Larson 1980, Fulton et al. 2005, Bro-
kovich et al. 2008, Konar et al. 2009, Reed et al. 2011, 
Magalhães et al. 2015, Parsons et al. 2016). Habitat-
forming species (i.e. oysters, coral, and kelp) sub-
sequently create biotic gradients (Wernberg et al. 
2011, Beaton et al. 2020). Variable distributions of 
other reef species across depth influence competi-
tion, herbivory, and predation (Bell 1983, Bay et al. 
2001, Pedersen et al. 2012, Vergés et al. 2012, Carr & 
Reed 2016). Despite the high turnover of conditions 
and resultant communities in the coastal ocean, the 
effect of depth on subtidal species abundance, diver-
sity, and community composition is still relatively 
unexplored because of the challenges associated with 
multi-taxa, underwater surveys (Parsons et al. 2016). 

The Southern California Bight (SCB) provides an 
ideal context for integrating knowledge of rocky reef 
species distributions into infrastructure design. Future 
development of aquaculture, oil and gas, renewable 
energy, and mining projects in this region will require 
the construction of new marine infrastructure (Insti-
tute for Applied Economics 2020). Already, the SCB 
has experienced extensive human disturbance, espe-
cially along the coast of the mainland, that has directly 
impacted the availability of hard substrate and sub-
sequently the composition of nearshore aquatic com-
munities (Murray & Littler 1981, Foster & Schiel 2010). 
Recently, coastal landslides, marine heatwaves, and 
food-web modifications have further highlighted the 
vulnerability of these critical ecosystems (Pondella et 
al. 2018, Cavanaugh et al. 2019). 

Located at the intersection of cold and warm biogeo-
graphical provinces, southern California’s rocky reefs 
also offer a unique opportunity to investigate variabil-
ity in subtidal zonation across an ecotone. These prov-
inces are further divided into island and mainland 

habitats that differ in bathymetry, habitat diversity, 
oceanography, and extent of coastal development (Ebe -
ling & Larson 1980, Pondella et al. 2015, Claisse et al. 
2018, Gamble 2025). In this transitional zone, north-
ward-flowing warm waters of the Davidson Counter-
current intersect with southward-flowing cold waters 
of the California Current (Emery 1960, Dailey et al. 
1993, Hickey 1993). This confluence leads to the pres-
ence of both warm- and cool-water species, with dy-
namic distributions through both space and time 
(Murray & Littler 1981, McClatchie et al. 2016, Zahn et 
al. 2016). Dependent on hard substrate, giant kelp 
Macrocystis pyrifera functions as a fast-growing foun-
dational species (Carr & Reed 2016). Kelp forests pro-
vide diverse ecosystem goods and services including 
harvesting opportunities, wave attenuation and nu-
trient cycling (Carr & Reed 2016, Teagle et al. 2017). 
California’s reefs support recreational and commercial 
fisheries for kelp, urchin, abalone, lobster, and finfish 
(Tegner et al. 1996). The Chumash, Gabrieleño-Tongva, 
Acjachemen, and Ku meyaay Peoples of what is now 
California have historically maintained deep relation-
ships with these rocky reef ecosystems (Steneck et al. 
2002, Learn 2021, Gabrielino-Tongva Indian Tribe, 
https://gabrielinotribe.org/; Northern Chumash Tri -
bal Council, https://chumashsanctuary.org/; Juaneño 
Band of Mission Indians Acjachemen Nation, https://
www.jbmian.com/ ). 

Despite the prevalence of long-term monitoring in 
this region (Pondella et al. 2019, Caselle et al. 2022), 
depth zonation of subtidal rocky reef species has not 
previously been described. Here, we used 8 years of 
subtidal (≤25 m) biodiversity surveys across mainland 
and island biogeographic provinces to examine (1) 
whether artificial reefs in southern California support 
similar communities to natural rocky reefs; (2) how spe-
cies abundance, diversity, and community composi-
tion vary with depth; and (3) whether these patterns 
are consistent across mainland and island reefs. Our 
findings establish a baseline to guide pro active and 
ecologically informed designs for future introduc-
tions of hard substrate into temperate coastal waters. 

2.  MATERIALS AND METHODS 

2.1.  Biodiversity surveys 

We used self-contained underwater breathing appa-
ratus (SCUBA) to conduct biodiversity surveys of reefs 
in the warm temperate region of the SCB (Table S1 in 
the Supplement at www.int-res.com/articles/suppl/
m774p091_supp.pdf; Zahn et al. 2016, Pondella et al. 
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2019, Williams et al. 2021). Data for these analyses 
were from surveys conducted by the Vantuna Research 
Group between 2016 and 2023 of sites with at least 
3 years of observations (Fig. 1; Table S1). Fish, macro-
invertebrates, and brown macro algae (referred to as 
macroalgae hereafter) were surveyed along benthic 
(all) and midwater (only fish) set-length transects using 
standardized survey methodologies that have been 
previously described (for further details, see Text S1, 
Table S2 both in the Supplement, and MME 2011, 
Claisse et al. 2012, Pondella et al. 2015). To maximize 
consistency between years, each site was surveyed 
either during summer (peak upwelling) or during the 
fall (waning upwelling). We surveyed artificial reefs 
across 4 complexes with unique characteristics (Fig. S1 
in the Supplement). Three complexes were located in 
Santa Monica Bay (SMB): (1) Santa Monica Artificial 
Reef (n = 3 biodiversity survey sites), (2) Marina del 
Rey Artificial Reef (n = 3), and (3) Hermosa Beach Ar-
tificial Reef (n = 1), and the fourth was built adjacent 
to natural reef along the Palos Verdes Peninsula: (4) 
Palos Verdes Restoration Reef (PVR) (n = 18). The 
SMB reefs surveyed for this study were primarily de-
signed to improve sport fishing opportunities and 
were constructed between the 1960s and 1980s using 
predominantly quarry rock, with 2 of the sites also in-
cluding concrete shelters or the degraded steel base-
frames of streetcars (Lewis & McKee 1989, D. J. Pon-

della II & J. P. Williams pers. obs.) (Table S1). PVR was 
constructed in 2020 using quarry rock to restore rocky 
reef communities by replacing hard substrate that had 
been lost or degraded through sedimentation and 
scour (Williams et al. 2022). Artificial reef sites had rel-
atively small footprints (average size: SMB = 371 m2, 
PVR = 1787  m2) and were therefore each surveyed 
with the same effort as a single natural reef depth zone. 
Artificial reefs were all located off the mainland be-
tween 13 and 23 m deep and were therefore compared 
to mainland natural reefs at similar depths (outer and 
deep depth zones). 

For comparison and to describe trends across depth 
and location, we also surveyed natural rocky reef 
sites. These reefs consisted of at least 250 m of con-
tinuous reef and were distributed across 200+ km 
between Malibu and San Diego. Unlike artificial reefs, 
natural reefs exist and therefore were surveyed off the 
mainland and islands (i.e. Santa Barbara, Santa Cata-
lina, and San Clemente Islands; Fig. 1). Natural reef 
sites were surveyed within 4 depth zones that encom-
passed the majority of hard subtidal habitat. Moving 
perpendicular from the shore, these zones were (with 
target depths) inner: ~5 m, middle: ~10 m, outer: ~15 m, 
and deep: ~25 m. Some sites were missing one or mul-
tiple depth zones where only soft sediment substrates 
were present (n = inner: 65 biodiversity survey sites, 
middle: 64, outer: 56, deep: 26; Fig. 1; Table S1). 
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Fig. 1. Study sites across the Southern California Bight, highlighting artificial (circles; n = 25) and natural (triangles; n = 66) 
reefs. A slight positional jitter was applied to improve visibility of adjacent sites. Inset: close-up of the Palos Verdes Peninsula, a 
region of dense sites, showing the arrangement of individual depth zones (inner, middle, outer, deep) surveyed within natural  

reef sites, as well as the location of the Palos Verdes Restoration Reef (artificial reef, AR; open circles)
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2.2.  Species abundance and diversity 

We examined patterns in abundance and alpha 
diversity (richness and evenness) of fish, inverte-
brates, and macroalgae across site type (artificial ver-
sus natural), depth, and site location (island versus 
mainland). Comparisons between island and main-
land were only made for natural reefs due to the lack 
of subtidal artificial reefs near islands in the region. 
For each artificial reef site and depth zone of natural 
reef sites, count densities (all taxa) and biomass den-
sities (fish only) were averaged across the time series 
(between 3 and 8 yr, depending on site, Table S1). 
Averages included zeros in the case where a species 
was once observed at a site but not in a given transect. 
We then used multi-year density averages to calcu-
late 2 metrics of alpha diversity: (1) species richness 
and (2) Simpson’s diversity index. We used the non-
parametric Kruskal-Wallis test to compare the SMB 
and PVR artificial reef complexes to mainland natural 
reefs at similar depths, followed by Dunn’s post hoc 
test using the Holm method for multiple comparisons. 
Additionally, for natural reefs, we tested for signifi-
cant differences in mean density or biomass between 
depth zones, and between mainland and island hab-
itats using the same statistical testing framework. 
While marine protected areas (MPAs) were not the 
focus of this study, we compared patterns in abun-
dance and diversity for sites within and outside of 
MPAs because human activity can impact depth 
zonation observed in reef ecosystems (Richardson et 
al. 2023). 

2.3.  Multivariate community analyses 

We used principal coordinates analysis (PCoA) to 
visualize and interpret differences in community com-
position among artificial reef sites and depth zones of 
natural reef sites. PCoA maximizes the similarity 
between true dissimilarities and how these dissimilar-
ities are displayed in ordination space (Anderson & 
Willis 2003). For multivariate visualizations and sta-
tistical analyses, we took the square root of all density 
values to reduce the weight of highly abundant spe-
cies, and used Bray-Curtis dissimilarity to measure dis-
tance between sites (artificial reefs) and depth zones 
(natural reef sites). Bray-Curtis dissimilarity calcu-
lates percent difference in community composition, is 
robust to sampling error, and is commonly used in 
multivariate ecological studies (Barwell et al. 2015, 
Schroeder & Jenkins 2018). To compare differences 
between artificial reefs and natural reefs at compa-

rable depths, we conducted permutational multivari-
ate analysis of variance (PERMANOVA; Anderson 
2017) using the ‘adonis2’ function of the ‘vegan’ 
package in R, version 4.2.1 (Oksanen et al. 2022, 
R Core Team 2022). We estimated the marginal effect 
of each term, therefore accounting for the contrib-
ution of other covariates when estimating coefficients 
and significance. PERMANOVAs were performed 
with 9999 permutations, and results were considered 
significant when p < 0.05. We also performed permu-
tational multivariate analysis of dispersion (PERM-
DISP) to compare variance between site types (Ander-
son & Walsh 2013). We repeated these analyses for 
natural reefs alone to compare communities across 
the full range of depth zones and locations, and to 
compare natural reef sites within MPAs to those out-
side of MPAs. When PERMANOVAs revealed signif-
icant differences across depths of natural reefs, we 
conducted additional pairwise PERMANOVAs to 
compare each pair of depth zones. Finally, we calcu-
lated the average density of each taxon at each depth 
zone to identify the most abundant species at each 
depth and provide a high-level illustration of commu-
nity zonation across reef locations and types. 

3.  RESULTS 

Across 25 artificial reef sites, we identified many of 
the same taxa present on natural reefs in addition to 3 
only observed during the study period on the artifi-
cial structures (44 fish [2 unique to artificial reefs], 50 
macroinvertebrates [1 unique to artificial reefs], and 7 
macroalgae) (Figs. 1 & 2b,c). Both SMB and PVR arti-
ficial reefs were dominated by blacksmith Chromis 
punctipinnis, and this damselfish was recorded at 
higher densities than at mainland natural reefs at sim-
ilar depths (Fig. S2a). Additionally, PVR supported 
densities of kelp perch Brachyistius frenatus, and 
SMB reefs supported densities of barred sand bass 
Paralabrax nebulifer higher than those found on simi-
larly positioned natural reefs. Fish biomass in SMB 
was dominated by barred sand bass, while opaleye 
Girella nigricans was most abundant on PVR. Giant 
sea bass Stereolepis gigas, kelp bass Paralabrax cla-
thratus, blacksmith, and California sheephead Bodia-
nus pulcher had consistently high biomass on both 
artificial and natural reefs (Fig. S2b). In general, artifi-
cial reefs across individual complexes supported sim-
ilar species assemblages (Fig. S3). However, average 
biomass of fish at Hermosa Beach Artificial Reef was 
more than double that of other complexes due to the 
presence of a few high-biomass species (broomtail 
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grouper Mycteroperca xenarcha and giant sea bass) 
(Fig. S3b). In comparison, on 66 natural reef sites 
across the SCB, we recorded 69 fish, 103 macroinver-
tebrates, and 20 macroalgae taxa (Figs. 1 & 2a,d). 

3.1.  Species abundance, diversity, and community 

composition on artificial reefs 

Fish density (both count and biomass-based) was 
higher on artificial reefs than on outer and deep natu-
ral mainland reefs (Figs. 3 & 4; Figs. S4 & S5a,d). 
However, artificial reefs supported similar numbers of 
fish species as mainland reefs at similar depths (Fig. 3; 
Fig. S5e). Count-based Simpson’s diversity index at 
artificial reefs was similar to that observed at natural 
mainland reefs at similar depths, and the biomass-
based Simpson’s diversity index was consistent across 
all reefs surveyed (Fig. 3; Fig. S5h,k). 

Macroalgae density at PVR was similar to densities 
found on natural reefs, while densities on SMB were 
significantly lower (near nonexistent) (Fig. 3; Fig. S5b). 
Average richness of macroalgae was lower on artifi-
cial reefs in comparison to natural reefs in similar set-
tings, but richness at PVR was higher than at SMB 
(Fig. 3; Figs. S4 & S5f). Simpson’s diversity index 
for  macroalgae at PVR was similar to that observed 
at  outer and deep mainland reefs, and higher than 
the diversity at SMB (although not significantly so) 
(Fig. 3; Figs. S4 & S5i). At PVR, golden kombu Lam-
inaria farlowii and giant kelp dominated the commu-
nity (Figs. 2 & 5). 

Artificial reefs hosted a subset of the diversity of 
macroinvertebrate species on natural reefs. How -
ever, SMB reefs had far higher macroinvertebrate 
abundance than all other sites surveyed (Figs. 3 & 6; 
Fig.  S5c). Crowned urchin Centrostephanus corona-
tus and wavy turban snails Megastraea undosa were 
less abundant, while the stalked tunicate Styela mon-
tereyensis was more common on artificial reefs than 
on natural reefs (Fig. 6). Due to a high density of 
golden gorgonians Muricea californica, macroinver-
tebrate densities at the SMB complexes were higher 
than at PVR, where the community was instead 
dominated by red urchin Mesocentrotus franciscanus 
(Fig. 6). The average number of taxa present on artifi-
cial reefs was significantly lower than on natural 
mainland reefs at similar depths (Fig. 3; Fig. S5g). 
Simpson’s diversity index of macroinvertebrate com-
munities on PVR was similar to that found on natural 
outer mainland reefs, but lower than that observed on 
natural deep mainland reefs (Fig. 3; Fig. S5j). Simp-
son’s diversity index of macroinvertebrate commu-

nities on SMB artificial reefs was significantly lower 
than that found in natural reefs at similar depths 
(Fig. 3; Fig. S5j). Simpson’s diversity index was higher 
for PVR than SMB artificial reefs, but not significantly 
so (Fig. 3; Fig. S3j). 

Overall, artificial reefs supported significantly dif-
ferent community structure from natural reefs in sim-
ilar settings (outer and deep zones of mainland reefs), 
although reef type only explained 9% of the variance, 
indicating substantial overlap (F1,105 = 10.2, p < 0.001; 
Fig. 7c). Variance differed between natural and artifi-
cial reefs, (PERMDISP, F1,105 = 9.5, p = 0.003; Fig. 7c), 
suggesting that differences in both composition and 
dispersion drove the disparity between the 2 reef 
types. Older-generation artificial reefs located in SMB 
supported distinct rocky reef communities from natu-
ral mainland reefs (outside of 95% confidence inter-
val for mainland reefs), while the more recently con-
structed reefs of PVR supported communities more 
similar to natural mainland reefs (inside of the 95% 
confidence interval; Fig. 7c). 

3.2.  Species abundance and diversity across depth 

on island and mainland natural reefs 

Patterns in fish abundance and diversity across 
depths varied between island and mainland sites 
(Fig. 3; Figs. S4 & S5). While overall fish density and 
biomass were higher at island sites (Fig. S4, Mann-
Whitney U-tests, abundance: W = 1619, p < 0.0001, 
biomass: W = 2628, p < 0.0001), more fish taxa were 
represented on average at mainland sites (W = 5907, 
p < 0.0001), and average Simpson’s diversity index 
was higher at mainland sites when weighted by count 
(W = 6130, p < 0.0001). At a finer scale, we found that 
island sites had significantly higher mean densities of 
fish than mainland sites in the middle, outer, and 
deep depth zones (Fig. 3; Fig. S5a). At island sites, 
average ± SD fish density and variability in fish den-
sity ranged from 35 ± 42 ind. 100 m–2 at inner depth 
zones to 108 ± 131 at deep depth zones. Mean fish 
density did not vary significantly across depth zones 
at mainland sites, nor did fish biomass density vary 
significantly across depth zones for either island or 
mainland sites. There was no difference in the mean 
number of fish taxa observed across depth zones at 
island sites. However, deep zones at mainland sites 
had significantly more fish taxa than inner and middle 
zones (Fig. 3; Fig. S5e). On average, significantly 
more fish taxa were represented at mainland sites 
than island sites (16.3 ± 4.4 vs. 13.7 ± 2.5). For both 
island and mainland sites, the count-based Simpson’s 
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diversity index was higher at shallower sites (Fig. 3; 
Fig. S5h). However, this pattern was not maintained 
for biomass-based Simpson’s diversity index (Fig. 3; 
Fig. S5k). On mainland reefs, fish abundance was 
higher at sites within MPAs (abundance: W = 3860, 
p < 0.0001; biomass: W = 4231, p < 0.0001), and this 
difference was most pronounced in outer and deep 
zones (Fig. S6). However, there was no difference in 
richness or Simpson’s diversity index (richness: W = 

2763, p = 0.57, Simpson’s diversity index for abun-
dance: W = 2520, p = 0.72, Simpson’s diversity index 
for biomass: W = 2472, p = 0.58). On island reefs, 
there were no differences in density, biomass, or rich-
ness between sites inside and outside the MPA (abun-
dance: W = 418, p = 0.36 ; biomass: W = 401, p = 0.54; 
richness: 364, p = 1; Simpson’s diversity index for 
abundance: W = 360, p = 0.95, Simpson’s diversity 
index for biomass: W = 338, p = 0.66). 
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Macroalgae abundance and richness declined with 
depth, but most comparisons in abundance and diver-
sity metrics between depth zones for both island and 
mainland reefs were not significant. However, we 
observed significantly higher macroalgae richness on 
inner versus outer mainland reefs (Fig. 3; Fig. S5f). 
While Simpson’s diversity index varied more across 
deeper sites than shallower sites, there were no signif-
icant differences in the average Simpson’s diversity 
index across depth zones for sites at any location 
(Fig.  3; Fig. S5f). Overall, while mean macroalgae 

density was higher at island sites (Fig. S4, Mann-
Whitney U-tests, W = 2920, p < 0.001), we found no 
difference in richness (W = 4402.5, p = 0.67) or in 
Simpson’s diversity index between island and main-
land sites (W = 4326, p = 0.82). There were no clear 
differences between macroalgae density and diver-
sity across depth inside and outside MPAs (Fig. S6). 

Overall, there was no difference in macroinver -
tebrate density between island and mainland sites 
(Fig. S4, Mann-Whitney U-tests, W = 4310, p = 0.86), 
but both richness (W = 6648, p < 0.0001), and average 
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Simpson’s diversity index were higher at mainland 
sites (W = 5560, p < 0.001). While deeper sites tended 
to have more macroinvertebrates, most comparisons 
in abundance between depth zones for both island 
and mainland reefs were not significant. However, we 
did observe significantly more macroinvertebrates on 
outer natural mainland reefs compared to inner reefs 
(Fig. 3; Fig. S5c). On mainland reefs, macroinverte-
brate richness was significantly higher in deep zones 
in comparison to inner and middle zones (Fig. 3; 
Fig. S5g). Simpson’s diversity index for macroinverte-
brates at outer and deep mainland sites was higher 
than at inner mainland sites, but did not differ across 
depth zones at island sites (Fig. 3; Fig. S5j). There 
were no clear differences between macroinvertebrate 
density and diversity across depth inside and outside 
MPAs (Fig. S6). 

3.3.  Community composition across depths on 

natural reefs 

Community composition of natural rocky reefs in 
SCB (i.e. pooled fish, macroinvertebrate, and macro-
algae) differed significantly by depth zone (PERM-
ANOVA, F3,207 = 16, R2 = 0.19, p < 0.001; Fig. 7a), and 
location (mainland vs. island; F1,209 = 34, R2 = 0.14, 
p < 0.001; Fig. 7b). Additionally, the relationship be -
tween depth zone and community composition varied 
between island and mainland habitats (depth zone × 
location interaction: F3,203 = 2.3, R2 = 0.02, p < 0.001). 
By repeating PERMANOVA for each pairwise combi-

nation, we found significant differences between all 
depth zones (p < 0.001; Fig. 7a). Differences between 
depth zones and reef locations were explained by dif-
ferences in community composition, not by differ-
ences in dispersion (PERMDISP ANOVA; depth zones: 
F3,207 = 0.45, p = 0.72; reef location: F1,209 = 0.50, p = 
0.48). Reefs within MPAs exhibited significantly dif-
ferent community composition than reefs outside 
MPAs, and this difference was not explained by dif-
ferences in dispersion. However, MPA status only 
explained 3% of the variation observed (PERM-
ANOVA, F1,209 = 6.4, p < 0.001; PERMDISP ANOVA, 
F1,209 = 0.76, p = 0.38; Fig. S7a). The significant struc-
ture we identified across depths and reef locations 
was maintained when multivariate analyses were 
repeated for taxa-specific communities. Additionally, 
the amount of variance explained by depth zone, 
location, and their interaction was consistent across 
taxa (fish: depth zone = 18%, location = 11%, interac-
tion = 2%; macroalgae: 17, 14, 2.9%; macroinverte-
brates: 16, 14, 2.2%) (Fig. S8). 

Abundance-based fish density increased with depth, 
primarily due to increases in blacksmith for mainland 
sites and both blacksmith and the cryptic bottom-
dwelling bluebanded goby Lythrypnus dalli for island 
sites (Fig. 4a). However, when accounting for bio-
mass, there were no clear dominant species for either 
mainland or island reefs (Fig. 4b). Rather, sargo Ani -
sotremus davidsonii, blacksmith, opaleye, Garibaldi 
Hyp sypops rubicundus, barred sand bass, and giant 
sea bass all exhibited high relative biomass in at least 
1 depth zone. Kelp bass was common across all depth 
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zones. California sheephead was common across depth 
zones on mainland sites while blacksmith and half-
moon Medialuna californiensis were both common 
across depth on island sites. 

Giant kelp, the foundational species in southern 
California rocky reef ecosystems, was common across 
all but deep mainland reef sites (Fig. 5). Devil weed 
Sargassum horneri (a nonnative member of the genus) 
was absent from mainland sites, but dominated the 
macroalgae community in the inner, middle, and outer 
zones of island sites. Fringed sieve kelp Agarum fim-
briatum was abundant at deep island and mainland 
sites. Stalked kelp Pterygophora californica was abun-
dant across depth zones at mainland sites, but was 
rare at island sites. Chain bladder kelp Stephanocystis 
osmundacea was abundant across all depth zones in 
mainland habitats and across inner to outer zones on 
island sites (Fig. 5). 

As mean macroinvertebrate density, richness, and 
diversity increased with depth, the dominant species 
shifted (Fig. 6). On the mainland, purple sea urchins 
Strongylocentrotus purpuratus and wavy turban snails 
dominated the community at inner sites. Purple and 
red urchins were both common between the middle 
and deep zones. Gorgonians began to appear fre -
quently (brown: Muricea fruticosa and golden: M. cal-
ifornica) in the outer zone, and these colonial cnidar-
ians were highly abundant in deep zones. For island 
sites, inner zones were dominated by crowned urchin 
and wavy turban snails. Crowned urchins remained 
dominant across depth zones at the islands, with red 
and purple urchins, snails, and red gorgonians Lepto-
gorgia chilensis increasing in relative abundance with 
depth. 

4.  DISCUSSION 

Here, we show that artificial reefs in the SCB can 
support subtidal communities that resemble those 
on nearby natural rocky reefs at similar depths. Yet, 
even within a 30 km radius, community compo si -
tion  on artificial reefs can differ dramatically —
particularly for macroinvertebrates and macroalgae —
highlighting the importance of local context in mar-
ine infrastructure planning and implementation. Spa-
tial variation in natural reef community composition 
provides critical insights for designing effective arti -
ficial reefs in nearshore ecosystems. In subtidal envi-
ronments, strong environmental gradients occur over 
small spatial scales (Twist et al. 2020). This character-
istic is true of California’s subtidal rocky reef ecosys-
tems and is reflected in the differences we observed 

in species richness, diversity, and community compo-
sition across a relatively narrow depth gradient. At 
the site level, these patterns vary by taxa group, with 
macroalgae often exhibiting opposite trends than fish 
and invertebrates. Additionally, our findings support 
previous research suggesting that zonation arising 
within island reefs is distinct from that observed on 
mainland reefs (Benedetti-Cecchi et al. 2003). 

In this study, artificial reefs mostly built from quarry 
rock and natural reefs at comparable depths sup-
ported similar rocky reef communities. For fishes, there 
were higher densities with similar diversity on the 
artificial versus natural reefs. The planktivorous black-
smith dominated fish communities across all reefs. 
However, we observed stark and important differ-
ences in overall community diversity and composi-
tion between artificial reefs built in the 1960s–1980s 
in SMB and those built off the Palos Verdes Peninsula 
in 2020 (PVR) (Williams et al. 2022). The former are 
located on soft bottom habitat far from large natural 
reefs — reflective of artificial reefs built in California 
and globally during the second half of the 20th cen-
tury (Lewis & McKee 1989). They were intentionally 
placed in nonoptimal locations (soft bottom habitat) 
to avoid negatively impacting natural reefs. These 
earlier generation reefs were designed as fishing 
reefs, optimizing attraction to enhance the sport fish-
ing industry (Carlisle et al. 1963), and in the case of 
SMB, were located in an area with limited light avail-
ability and relatively warm water (Schroeter et al. 
2015). These reefs have supported high biomass of 
barred sand bass unseen on any other reefs in the 
SMB, potentially a result of this species’ preference 
for deeper ecotonal habitats that are abundant on the 
SMB artificial reefs (Anderson et al. 1989), and prox-
imity to spawning aggregations (Erisman et al. 2011). 
While SMB artificial reefs supported higher fish den-
sities and biomass than natural mainland reefs, they 
were associated with more divergent communities of 
macroalgae and macroinvertebrates than natural main-
land reefs. In contrast to natural reefs, these reefs did 
not support macroalgae and were dominated by a sin-
gle macroinvertebrate taxon — gorgonians — possibly 
due to competitive release from algae. 

Unlike the SMB artificial reefs, PVR (Williams et al. 
2022) hosted species at densities similar to natural 
reefs. The recently constructed reef was built adja-
cent to natural rocky reef habitat to enhance dispersal 
opportunities and within a cold nutrient-rich zone 
near the shelf break to promote the growth of giant 
kelp. As opposed to SMB, PVR was built to restore 
lost habitat and increase fish and invertebrate produc-
tion. While macroalgae were nearly absent on the 
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SMB artificial reefs, we observed that PVR supported 
similar densities to natural mainland reefs at the same 
depth stemming from successful giant kelp and 
golden kombu establishment. We observed lower 
macroalgae diversity on PVR than on natural reefs; 
however, the reef has only been in existence since 
2020, limiting the duration of time (<3 yr) that macro-
algal species have had to become established. How -
ever, despite its early successional stage, we observed 
higher macroalgae density and diversity on PVR than 
on the SMB artificial reefs. In contrast, macroinverte-
brate density was over 2 times higher on SMB artifi-
cial reefs than on natural reefs at the same depth, fully 
driven by high densities of gorgonians (octocorals 
of  the order Malacalcyonacea) — most notably, the 
golden gorgonian. While gorgonians were also com-
mon on natural reefs at northern sampling sites in the 
general area of the SMB artificial reefs, previous 
research supports that gorgonians excel at colonizing 
human-made structures (Zeevi Ben-Yosef & Benay-
ahu 1999). Macroinvertebrate densities on PVR were 
more reflective of densities found on natural reefs, 
although we observed a higher relative proportion of 
red urchins. This finding upholds previous work not-
ing that artificial reefs could be used as a tool to main-
tain catch and access in California’s lucrative red 
urchin fishery (California Department of Fish and 
Wildlife 2019). Overall, we found that smaller reefs 
built to boost recreational fishing opportunities 
located on soft bottom habitat far from large natural 
reefs supported distinctive communities from larger 
artificial reefs built with the intention of restoring 
complex rocky reef communities of the SCB. How -
ever, we note that PVR is a reef in early successional 
phases. Observations made within the first 3 yr post 
construction may not be representative of its long-
term trajectory (Kraufvelin et al. 2023). 

The artificial reefs surveyed for this study were all 
located near the mainland and at moderate subtidal 
depths. However, patterns in natural reef habitats 
across SCB more broadly can help us anticipate the 
characteristics of rocky reef communities that will 
establish on novel human-made structures across the 
region. For both fish and macroinvertebrates, density 
and richness were higher in deeper reef habitats 
(~15–25 m). Deeper reef zones have a larger water 
column, and therefore provide more 3-dimensional 
habitat for fish to exploit. Niche opportunities also 
increase for fish with depth as the midwater zone 
expands (Larson & DeMartini 1984). Depth prefer-
ences of rocky reef macroinvertebrates are highly 
variable (Kato & Schroeter 1985, Claisse et al. 2013, 
Hovel et al. 2015), but the observed increase in den-

sity with depth was largely driven by an increase in 
gorgonian density. 

In contrast, macroalgae densities, which are highly 
limited by light accessibility, were highest at the shal-
lowest sites, matching previous observations across 
the northeast Pacific (Aleem 1973, Konar et al. 2009). 
Regionally, reefs with a high abundance of canopy-
forming macroalgae tend to support more diverse fish 
communities overall. However, within those reefs, 
fish density is often greatest at the edges of the kelp 
canopy and in areas where kelp density is relatively 
low (Willis & Anderson 2003). High-density plankti-
vorous fishes such as blacksmith benefit from the 
increased availability of planktonic food resources 
near the kelp forest edge where water flow and mix-
ing can concentrate prey (Foster & Schiel 1985). Sim-
ilarly, gorgonians, which orient themselves per -
pendicular to dominant current flows to maximize 
plankton capture (Grigg 1977), thrive in deeper hab-
itats where lower kelp densities allow for favorable 
water flow conditions. In contrast with fish and mac-
roinvertebrates, macroalgae richness was relatively 
consistent across depth. 

On deeper reefs, fish and macroalgae communities 
were typically dominated by 1 or 2 species, resulting 
in low evenness. In contrast, macroinvertebrate com-
munities exhibited greater evenness in their composi-
tion at depth when compared to shallow zones. The 
evenness of macroinvertebrate taxa we observed on 
natural reefs stands in contrast to observations in 
high-latitude rocky reefs in the Pacific where patterns 
in zonation can be driven by a single species (Konar et 
al. 2009), and also in contrast to our observations at 
the SMB artificial reefs that were dominated by gor-
gonians. In the case of fish, we were able to compare 
abundance-based versus biomass-based metrics. Low 
evenness in fish diversity in the outer and deep depth 
zones was primarily driven by blacksmith, a high-
density small-bodied species, and therefore this trend 
was not reflected in the biomass-based metrics (Bray 
1980). 

Differences in community composition with depth 
were discernible in multivariate analysis, but not 
completely distinct. As predicted, adjacent depth 
zones exhibited more similar community composition 
than distant zones. There was no overlap between the 
shallowest and deepest zones, suggesting that we 
may have found more distinct zonation if we had 
looked over a larger depth range (Parsons et al. 2016). 
Depth zones of island reefs shared more common 
community composition than mainland sites, which 
can be attributed to higher habitat heterogeneity 
across depths at mainland sites. Because of the shal-
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low slope associated with mainland reefs, depth zones 
can be 100s of meters apart. At the same time, main-
land reefs also tend to be less cohesive and frequently 
intersect with soft bottom habitat. In contrast, depth 
zones of steep island sites are in closer proximity to 
each other, and only past the deep depth zone (and 
therefore past our maximum sampling depth) does 
the habitat transition to soft bottom (Pondella et al. 
2015). Sampling methods that can safely capture this 
ecotone (e.g. remotely operated vehicles) may reveal 
more extreme compositional differences; however, in 
situ biodiversity surveys are a more effective tool for 
monitoring diversity in comparison to other methods 
(Jessop et al. 2022). Similar to previous studies, we 
found that community zonation varied with the level 
of human activity (Richardson et al. 2023); however, 
MPA status explained a very low proportion of the 
variation observed. 

Variability in fish density across depth was largely 
driven by the abundance of the blacksmith, an abun-
dant planktivorous reef-associated species. Black-
smith increased in density with depth on both island 
and mainland sites, reaching nearly 500 ind. 100 m–2 
at deep sites around Santa Catalina Island and nearly 
200 ind. 100 m–2 at deep sites around the Palos Verdes 
Peninsula off the mainland. We expect that the high 
densities observed at depth are related to the species’ 
preference for incurrent reef boundaries with high 
flow and plankton abundance (Hobson & Chess 1976, 
Bray 1980, Bray et al. 1986). Blacksmith tend to feed 
outside the kelp canopy where there is greater cur-
rent flow and corresponding flux of zooplankton 
(Bray 1980). This area typically coincides with the 
outer and deep depth zones when giant kelp is pre-
sent. Similar to the role they play on nutrient-
deprived tropical reefs (Roopin et al. 2011), planktivo-
rous fish play a critical role on temperate rocky reefs 
by producing urea (Bray et al. 1986, Shrestha et al. 
2025). Weak upwelling in the SCB in the late summer 
and fall leads to low nitrate concentrations, during 
which time blacksmith help maintain nitrogen avail-
able for kelp to absorb (Lees et al. 2024). Artificial 
reefs designed to support both kelp and fish densities 
can trigger a positive feedback loop where increased 
biogenic habitat provides refuge for fish, supporting 
a  larger blacksmith population that subsequently 
releases more ammonia back into the habitat for 
kelp to absorb (Layman & Allgeier 2020, Shrestha et 
al. 2025). In addition to providing readily accessible 
nitrogen to rocky reef ecosystems, blacksmith also 
serve as a prey source for larger-bodied fish such 
as kelp bass and therefore act as a critical vector for 
energy transfer between the pelagic zone and rocky 

reef ecosystems (Johnson et al. 1994, Puckeridge et 
al. 2021). 

On average, macroalgae density was higher on 
island than mainland reefs, and this dichotomy was 
especially pronounced at shallow depths with higher 
light availability. The high abundance of kelp we 
observed at island reefs may be linked to water qual-
ity, which is typically better around islands due to 
limited runoff and pollution (Conversi & McGowan 
1994). Island reefs also hosted especially dense pop-
ulations of the brown macroalgae genus Sargassum. 
Similar to previous characterizations of the species’ 
natural history in the SCB, we observed highest den-
sities at intermediate subtidal depths where individ-
uals take advantage of moderate wave action and 
light attenuation (Marks et al. 2018). While the native 
S. palmeri outnumbered the invasive devil weed S. 
horneri in the most shallow zones, devil weed out-
numbered the native Sargassum in the deeper zones. 
Devil weed dominated the macroalgae community at 
intermediate depths on island reefs, while fringed 
sieve kelp Neoagarum fimbriatum dominated at the 
deepest depths surveyed. 

Native to western Japan and South Korea, devil 
weed was first identified in the SCB in 2003 and is now 
established along the SCB and into Baja California 
(Mexico) (Marks et al. 2015). The species struggles to 
establish in stable and established communities, and 
is therefore in low abundance in well established kelp 
forests (likely due to competition with giant kelp) and 
in urchin barrens (likely due to predation by urchins) 
(Zhang et al. 2017, Caselle et al. 2018, Sullaway & 
Edwards 2020). However, the nonnative species forms 
large mats within rocky reefs in a transitional state 
(e.g. MPAs designated in the early 2000s) where seem-
ingly neither giant kelp nor urchins are at high enough 
abundance to exclude devil weed. Across all depth 
zones, the invasive Sargassum was at least an order of 
magnitude more common on islands than on the main-
land, consistent with its preference for the warmer 
waters present around the more southern Channel 
Islands included in this study (Marks et al. 2015). 
While artificial reefs can act as a haven for nonnative 
aquatic species and therefore facilitate range expan-
sions, we did not observe devil weed on artificial reefs 
in the SCB (Sheehy & Vik 2010). Despite its role in 
widespread landscape change in southern California 
rocky reef ecosystems, devil weed appears to be a dis-
turbance opportunist rather than a driver of commu-
nity transformation and has relatively limited impacts 
on higher trophic levels (Ginther & Steele 2020). 

In the SCB, the differences in patterns of diversity 
and species composition across depths are a function 
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of island biogeography, habitat heterogeneity, local 
oceanography, and proximity to human activity. 
Richness of all taxa was higher on the mainland. This 
observation was consistent across depth zones, al -
though most pronounced in deep zones for fish and 
macroinvertebrates. We hypothesize that reduced dis-
persal opportunities to and among island sites, cou-
pled with a heterogenous mainland shoreline, drove 
this island/mainland dichotomy common to the island 
biogeography literature (MacArthur & Wilson 1967, 
Sandin et al. 2008). There were over 20 taxa that we 
only observed on mainland reefs, including multiple 
species of rockfish, soft bottom species such as the 
thornback ray Platyrhinoidis triseriata and black 
croaker Cheilotrema saturnum, and estuarine species 
such as the bay pipefish Syngnathus leptorhynchus. 
Proximity to diverse habitats present on the mainland 
coast likely permit more niche differentiation and 
therefore higher richness (Ebeling & Larson 1980, Pon -
della & Allen 2000). We also observed greater macro-
invertebrate and macroalgae richness on the main-
land. However, the difference in richness was least 
pronounced for macroalgae, which require hard sub-
strates to anchor to the seafloor and therefore cannot 
exploit the soft bottom habitats abundant in the shal-
low subtidal of the mainland (Duarte et al. 2022). 

On rocky reefs, population dynamics, resource 
availability, and feeding behavior vary diurnally and 
seasonally (McIlwain et al. 2011, Cyronak et al. 2020). 
Mobile species can adjust their depth over the course 
of a day, and many taxa exhibit changes in abundance 
and position over the course of a year. Therefore, the 
patterns we describe in species abundance, diversity, 
and community composition across depth are most 
representative of daytime conditions in the summer 
and fall. However, because species richness and 
abundance on reefs are often higher during the day 
(Azzurro et al. 2007), these surveys capture a substan-
tial portion of reef diversity. As noted earlier, there 
are currently no artificial reefs in the shallow subtidal 
zone or around offshore islands in the study region. 
Based on the depth-related patterns observed in this 
study, we expect that communities on new artificial 
structures placed in these areas would differ from 
those in the deeper subtidal habitats where artificial 
reefs are currently located in southern California. 

5.  CONCLUSIONS 

The footprint of marine infrastructure is expanding 
in southern California due to an increased reliance on 
marine resources and renewed interest in artificial 

reef development as a tool for restoration (Institute for 
Applied Economics 2020, California Department of 
Fish and Wildlife 2024). Globally, most artificial reefs 
are constructed at depths similar to those surveyed in 
this study, making our findings broadly applicable for 
setting baseline expectations in artificial reef commu-
nity analyses (Ramm et al. 2021). Proximity to natural 
reef habitat, complexity, design criteria, and environ-
mental conditions impact species abundance and 
diversity on artificial reefs (Ambrose & Swarbrick 
1989, Granneman & Steele 2015, Tsiamis et al. 2020). 
Our findings reveal depth-driven shifts in abundance 
and diversity across Southern California rocky reefs, 
although the magnitude and nature of these shifts 
vary by taxon. 

In the context of ongoing environmental change, 
documenting baseline ecological patterns is increas-
ingly critical for assessing the resilience of dynamic 
and at-risk ecosystems. An understanding of depth 
associations for a diverse array of rocky reef species 
can improve detection of depth shifts associated with 
temperature, oxygen availability, and direct human 
impacts, which have already been observed across 
taxa (Meyer-Gutbrod et al. 2021, Richardson et al. 
2023). The persistence of giant kelp forests in the 
SCB remains uncertain, as persistent runoff and rising 
ocean temperatures pose significant challenges (Carr 
& Reed 2016, Berberian et al. 2024). These findings 
highlight the importance of aligning artificial reef 
design with ecological objectives to ensure that novel 
structures support biodiversity and resilience in a 
rapidly changing marine environment. 
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